skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Warnock, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Biostratigraphy is frequently used to generate age models and is significant to understanding the rate and timing of Cenozoic climate change. Records from the Southern Ocean (SO) are particularly valuable in understanding the past behavior of the Antarctic Ice Sheet, whereby clues to this behavior can be gained from the presence and composition of preserved microfossils. Diatoms, a nearly ubiquitous group of microalgae that make cell walls out of opal, preserve well in Southern Ocean sediments and have been used extensively in Southern Ocean biostratigraphy. Here, we present an updated diatom biostratigraphy of the Southern Ocean extending 3.3 Myr from sediments recovered during International Ocean Discovery Program (IODP) Expedition 382 “Iceberg Alley” Site U1537. Furthermore, we compare a tuned age model to a paleomagnetic-based age model to provide two independent estimates of ages of these datums with quantified uncertainty. The high sedimentation rate found at Site U1537 allows detailed age assessment, allowing the generation of more finely tuned age models in Southern Ocean sediments. 
    more » « less
  2. {"Abstract":["Supplementary tables in support of "Antarctic response to orbital forcing during the intensification of extensive bipolar glaciation (1.75-3.30 Ma) from relative paleomagnetic intensity (RPI) stratigraphy of the Dove Basin, Scotia Sea, in Iceberg Alley.""]} 
    more » « less
  3. Data files for rock magnetic data collected on discrete samples at the Institute for Rock Magnetism, University of Minnesota on a Quantum Designs Magnetic Properties System 3 (MPMS3) and Lakeshore Model 8600 Vibrating Sample Magnetometer (VSM). Data include Field Cooled (FC), Zero Field Cooled (ZFC), and Low Temperature Cycling of Room Temperature Saturation Isothermal Remanent Magnetization (LTC-RTSIRM) curves measured on the MPMS and Hysteresis Loops, Direct Current Demagnetization Curves, and Hysteresis Loops collected on the VSM. 
    more » « less
  4. Abstract Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA ( sed aDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sed aDNA damage analysis) metagenomic marine eukaryote sed aDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sed aDNA record of ~1 Mio. years and diatom and chlorophyte sed aDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO ). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sed aDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles. 
    more » « less
  5. Abstract The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO 2 levels. 
    more » « less